Highest vectors of representations (total 8) ; the vectors are over the primal subalgebra. | −h6−2h5−2/3h4+2/3h3+2h2+h1 | g17+3/4g6+3/4g1 | g4+g3 | g20+g19 | g9 | g18 | g16 | g21 |
weight | 0 | 2ω1 | 2ω2 | 4ω1 | 4ω2 | 3ω1+2ω2 | 3ω1+2ω2 | 6ω1 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | 0 | 2ω1 | 2ω2 | 4ω1 | 4ω2 | 3ω1+2ω2−14ψ | 3ω1+2ω2+14ψ | 6ω1 |
Isotypical components + highest weight | V0 → (0, 0, 0) | V2ω1 → (2, 0, 0) | V2ω2 → (0, 2, 0) | V4ω1 → (4, 0, 0) | V4ω2 → (0, 4, 0) | V3ω1+2ω2−14ψ → (3, 2, -14) | V3ω1+2ω2+14ψ → (3, 2, 14) | V6ω1 → (6, 0, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
| Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | 2ω1 0 −2ω1 | 2ω2 0 −2ω2 | 4ω1 2ω1 0 −2ω1 −4ω1 | 4ω2 2ω2 0 −2ω2 −4ω2 | 3ω1+2ω2 ω1+2ω2 3ω1 −ω1+2ω2 ω1 3ω1−2ω2 −3ω1+2ω2 −ω1 ω1−2ω2 −3ω1 −ω1−2ω2 −3ω1−2ω2 | 3ω1+2ω2 ω1+2ω2 3ω1 −ω1+2ω2 ω1 3ω1−2ω2 −3ω1+2ω2 −ω1 ω1−2ω2 −3ω1 −ω1−2ω2 −3ω1−2ω2 | 6ω1 4ω1 2ω1 0 −2ω1 −4ω1 −6ω1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | 0 | 2ω1 0 −2ω1 | 2ω2 0 −2ω2 | 4ω1 2ω1 0 −2ω1 −4ω1 | 4ω2 2ω2 0 −2ω2 −4ω2 | 3ω1+2ω2−14ψ ω1+2ω2−14ψ 3ω1−14ψ −ω1+2ω2−14ψ ω1−14ψ 3ω1−2ω2−14ψ −3ω1+2ω2−14ψ −ω1−14ψ ω1−2ω2−14ψ −3ω1−14ψ −ω1−2ω2−14ψ −3ω1−2ω2−14ψ | 3ω1+2ω2+14ψ ω1+2ω2+14ψ 3ω1+14ψ −ω1+2ω2+14ψ ω1+14ψ 3ω1−2ω2+14ψ −3ω1+2ω2+14ψ −ω1+14ψ ω1−2ω2+14ψ −3ω1+14ψ −ω1−2ω2+14ψ −3ω1−2ω2+14ψ | 6ω1 4ω1 2ω1 0 −2ω1 −4ω1 −6ω1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M0 | M2ω1⊕M0⊕M−2ω1 | M2ω2⊕M0⊕M−2ω2 | M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1 | M4ω2⊕M2ω2⊕M0⊕M−2ω2⊕M−4ω2 | M3ω1+2ω2−14ψ⊕Mω1+2ω2−14ψ⊕M3ω1−14ψ⊕M−ω1+2ω2−14ψ⊕Mω1−14ψ⊕M3ω1−2ω2−14ψ⊕M−3ω1+2ω2−14ψ⊕M−ω1−14ψ⊕Mω1−2ω2−14ψ⊕M−3ω1−14ψ⊕M−ω1−2ω2−14ψ⊕M−3ω1−2ω2−14ψ | M3ω1+2ω2+14ψ⊕Mω1+2ω2+14ψ⊕M3ω1+14ψ⊕M−ω1+2ω2+14ψ⊕Mω1+14ψ⊕M3ω1−2ω2+14ψ⊕M−3ω1+2ω2+14ψ⊕M−ω1+14ψ⊕Mω1−2ω2+14ψ⊕M−3ω1+14ψ⊕M−ω1−2ω2+14ψ⊕M−3ω1−2ω2+14ψ | M6ω1⊕M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1⊕M−6ω1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M0 | M2ω1⊕M0⊕M−2ω1 | M2ω2⊕M0⊕M−2ω2 | M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1 | M4ω2⊕M2ω2⊕M0⊕M−2ω2⊕M−4ω2 | M3ω1+2ω2−14ψ⊕Mω1+2ω2−14ψ⊕M3ω1−14ψ⊕M−ω1+2ω2−14ψ⊕Mω1−14ψ⊕M3ω1−2ω2−14ψ⊕M−3ω1+2ω2−14ψ⊕M−ω1−14ψ⊕Mω1−2ω2−14ψ⊕M−3ω1−14ψ⊕M−ω1−2ω2−14ψ⊕M−3ω1−2ω2−14ψ | M3ω1+2ω2+14ψ⊕Mω1+2ω2+14ψ⊕M3ω1+14ψ⊕M−ω1+2ω2+14ψ⊕Mω1+14ψ⊕M3ω1−2ω2+14ψ⊕M−3ω1+2ω2+14ψ⊕M−ω1+14ψ⊕Mω1−2ω2+14ψ⊕M−3ω1+14ψ⊕M−ω1−2ω2+14ψ⊕M−3ω1−2ω2+14ψ | M6ω1⊕M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1⊕M−6ω1 |