Subalgebra A101+A41A16
26 out of 61
Computations done by the calculator project.

Subalgebra type: A101+A41 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A101 .
Centralizer: T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: A16
Basis of Cartan of centralizer: 1 vectors: (3, 6, 2, -2, -6, -3)

Elements Cartan subalgebra scaled to act by two by components: A101: (3, 4, 4, 4, 4, 3): 20, A41: (0, 0, 2, 2, 0, 0): 8
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: g1+g6+g17, g3+g4
Positive simple generators: 4g17+3g6+3g1, 2g4+2g3
Cartan symmetric matrix: (1/5001/2)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (20008)
Decomposition of ambient Lie algebra: V6ω12V3ω1+2ω2V4ω2V4ω1V2ω2V2ω1V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V3ω1+2ω2+14ψV6ω1V4ω2V4ω1V2ω2V2ω1V0V3ω1+2ω214ψ
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 8) ; the vectors are over the primal subalgebra.h62h52/3h4+2/3h3+2h2+h1g17+3/4g6+3/4g1g4+g3g20+g19g9g18g16g21
weight02ω12ω24ω14ω23ω1+2ω23ω1+2ω26ω1
weights rel. to Cartan of (centralizer+semisimple s.a.). 02ω12ω24ω14ω23ω1+2ω214ψ3ω1+2ω2+14ψ6ω1
Isotypic module decomposition over primal subalgebra (total 8 isotypic components).
Isotypical components + highest weightV0 → (0, 0, 0)V2ω1 → (2, 0, 0)V2ω2 → (0, 2, 0)V4ω1 → (4, 0, 0)V4ω2 → (0, 4, 0)V3ω1+2ω214ψ → (3, 2, -14)V3ω1+2ω2+14ψ → (3, 2, 14)V6ω1 → (6, 0, 0)
Module label W1W2W3W4W5W6W7W8
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Cartan of centralizer component.
h62h52/3h4+2/3h3+2h2+h1
Semisimple subalgebra component.
4/3g17g6g1
h6+4/3h5+4/3h4+4/3h3+4/3h2+h1
2/3g1+2/3g6+2/3g17
Semisimple subalgebra component.
g4g3
h4+h3
g3+g4
g20+g19
g6g1
h6+h1
2g12g6
2g19+2g20
g9
g4g3
h4+h3
3g33g4
6g9
g18
g14
g15
g2
g10
g11
g7
g8
g5
g12
g13
g16
g16
g13
g12
g5
g8
g7
g11
g10
g2
g15
g14
g18
g21
g20g19
2g17+g6+g1
h6+2h5+2h4+2h3+2h2h1
4g14g6+6g17
10g19+10g20
20g21
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above02ω1
0
2ω1
2ω2
0
2ω2
4ω1
2ω1
0
2ω1
4ω1
4ω2
2ω2
0
2ω2
4ω2
3ω1+2ω2
ω1+2ω2
3ω1
ω1+2ω2
ω1
3ω12ω2
3ω1+2ω2
ω1
ω12ω2
3ω1
ω12ω2
3ω12ω2
3ω1+2ω2
ω1+2ω2
3ω1
ω1+2ω2
ω1
3ω12ω2
3ω1+2ω2
ω1
ω12ω2
3ω1
ω12ω2
3ω12ω2
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer02ω1
0
2ω1
2ω2
0
2ω2
4ω1
2ω1
0
2ω1
4ω1
4ω2
2ω2
0
2ω2
4ω2
3ω1+2ω214ψ
ω1+2ω214ψ
3ω114ψ
ω1+2ω214ψ
ω114ψ
3ω12ω214ψ
3ω1+2ω214ψ
ω114ψ
ω12ω214ψ
3ω114ψ
ω12ω214ψ
3ω12ω214ψ
3ω1+2ω2+14ψ
ω1+2ω2+14ψ
3ω1+14ψ
ω1+2ω2+14ψ
ω1+14ψ
3ω12ω2+14ψ
3ω1+2ω2+14ψ
ω1+14ψ
ω12ω2+14ψ
3ω1+14ψ
ω12ω2+14ψ
3ω12ω2+14ψ
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M0M2ω1M0M2ω1M2ω2M0M2ω2M4ω1M2ω1M0M2ω1M4ω1M4ω2M2ω2M0M2ω2M4ω2M3ω1+2ω214ψMω1+2ω214ψM3ω114ψMω1+2ω214ψMω114ψM3ω12ω214ψM3ω1+2ω214ψMω114ψMω12ω214ψM3ω114ψMω12ω214ψM3ω12ω214ψM3ω1+2ω2+14ψMω1+2ω2+14ψM3ω1+14ψMω1+2ω2+14ψMω1+14ψM3ω12ω2+14ψM3ω1+2ω2+14ψMω1+14ψMω12ω2+14ψM3ω1+14ψMω12ω2+14ψM3ω12ω2+14ψM6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1
Isotypic characterM0M2ω1M0M2ω1M2ω2M0M2ω2M4ω1M2ω1M0M2ω1M4ω1M4ω2M2ω2M0M2ω2M4ω2M3ω1+2ω214ψMω1+2ω214ψM3ω114ψMω1+2ω214ψMω114ψM3ω12ω214ψM3ω1+2ω214ψMω114ψMω12ω214ψM3ω114ψMω12ω214ψM3ω12ω214ψM3ω1+2ω2+14ψMω1+2ω2+14ψM3ω1+14ψMω1+2ω2+14ψMω1+14ψM3ω12ω2+14ψM3ω1+2ω2+14ψMω1+14ψMω12ω2+14ψM3ω1+14ψMω12ω2+14ψM3ω12ω2+14ψM6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1

Semisimple subalgebra: W_{2}+W_{3}
Centralizer extension: W_{1}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00)
(0.00, 1.00, 0.00)
0: (1.00, 0.00, 0.00): (700.00, 300.00)
1: (0.00, 1.00, 0.00): (200.00, 500.00)
2: (0.00, 0.00, 1.00): (200.00, 300.00)




Made total 3298 arithmetic operations while solving the Serre relations polynomial system.